Acta Cryst. (1991). C47, 1958-1959

Growth and Structure Refinement of CaSeO₄.2H₂O

BY ROLF-RÜDIGER KRÜGER

Institut für Anorganischen Chemie und SFB 173 der Universität, Callinstr. 9, D-3000 Hannover 1, Germany

AND WALTER ABRIEL*

AWHchemconsult, Weilheimerstr. 15, D-8000 München 70, Germany

(Received 1 October 1990; accepted 26 February 1991)

Abstract. CaSeO₄.2H₂O, $M_r = 219.07$, monoclinic, I2/a, a = 5.8377 (8), b = 15.521 (2), c = 6.595 (1) Å, $\beta = 116.837$ (9)°, V = 533.2 Å³, Z = 4, $D_x = 2.729$ g cm⁻³, λ (Mo K α) = 0.7107 Å, $\mu = 78.57$ cm⁻¹, F(000) = 424, T = 293 K, R = 0.0171 for 468 reflections ($F > 3\sigma F$). A diffusion-controlled crystal-growth method with subsequent ultrasound twin-crystal cleavage was applied. The gypsum-type structure was confirmed.

Experimental. Precipitated from concentrated solutions, CaSeO₄.2H₂O generally forms small twinned crystals not suitable for single-crystal diffraction techniques (Snyman & Pistorius, 1963). In order to obtain high-quality single crystals gel-growth techniques (Henisch, 1970) were first tried. Owing to the high oxidation power of the selenate(VI) ion agar gels could not be used. The rather high solubility of CaSeO₄.2H₂O in water (70 g l^{-1}) also prevents the application of silica gels (Ca silicates are formed). With bentonite gels and with polyacrylamide gels, which are stable in air, no improvement of the crystal quality could be obtained. Finally, a controlled diffusion process with a diaphragm technique was successful. Common dialysis hoses were used (modified cellulose acetate ester, Visking tubing size 2-18/32", 13 mm diameter, from Medicell International Ltd, London). The hoses were filled with a half-concentrated aqueous solution of Na₂SeO₄ and placed into a half-concentrated aqueous solution of CaCl₂. After four weeks the crystals growing at the exterior side of the hose were removed and washed with ethanol. The well formed crystals showed typical 'swallow-tail' twinning. The crystals were layered with ethanol and treated with ultra sound for some 30 min. After this procedure single crystals could be selected.

The crystal used for the data collection was mounted on top of a glass thread. A summary of data and structure refinement is given in Table 1.

Table 1. Summary of data collection and structure refinement

Crystal shape	Faces $\{010\}, \{110\}, (12\overline{1}), (\overline{12}1), (12\overline{1}), (12\overline$
Crystal volume (mm ³)	7.4492×10^{-4}
Diffractometer	Siemens AED2, graphite- monochromated Mo Ka radiation
Determination of cell parameters	
number of reflections used	24
θ range (°)	25-30
Intensity data collection	
max. $\sin\theta/\lambda$ (Å ⁻¹)	0.5943
range of h, k, l	7,0,8 to 7,18,8
scan mode	ω , variable learnt profile method Clegg (1981)
standard reflections	1,10,1, 204, 262
intensity variation (%)	<1
measured reflections	965
unique reflections	468
observed reflections	468 with $F > 3\sigma_F$
R _{int}	0.0206
Numercial absorption correction	
min./max. transmission	0.497/0.66
Structure refinement (on F)	
R, wR, w = $0.5747/\sigma^2(F_o)$	0.0171, 0.0145
S	1.54
number of parameters	47
max. final shift/e.s.d.	0.044 for U of atom H(1)
min./max. final $\Delta \rho$ (e Å ⁻³)	$-0.39 \le \Delta \le 0.28$

Table 2. Positional and equivalent isotropic displacement parameters for atoms in CaSeO₄.2H₂O

	$U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_j \mathbf{a}_j.$					
	Site	x	y	z	$U_{eq}(\text{\AA}^2)$	
Ca	4(e)	0.75	0.16970 (5)	0	0.0145 (3)	
Se	4(e)	0.25	0.32914 (2)	0	0.0121 (2)	
O(1)	8(1)	0.2874 (3)	0.3873 (1)	0.2195 (3)	0.0202 (7)	
O(2)	8(f)	0.5093 (3)	0.2700 (1)	0.0957 (3)	0.0194 (6)	
O(W)	8(1)	0.6449 (4)	0.0684 (2)	0.2113 (4)	0.028 (1)	
H(1)	8(1)	-0.051 (6)	0.418 (2)	0.245 (5)	0.04 (1)†	
H(2)	8(f)	0.656 (7)	0.022 (2)	0.231 (6)	0.05 (1)†	
				• •		

† Isotropically refined.

The initial positions of Ca and Se were obtained from the structure model of gypsum CaSO₄.2H₂O (Cole & Lancucki, 1974) after shifting the origin $-\frac{1}{4}$, $-\frac{1}{4}$, $-\frac{1}{4}$ in order to achieve the special position 4(e) in the setting given in *International Tables for*

© 1991 International Union of Crystallography

^{*} Author to whom correspondence should be addressed.

Crystallography (Hahn, 1983). Subsequent ΔF synthesis yielded the positions of the O and H atoms. The positions of the latter could be refined isotropically without any constraints. Scattering factors for neutral atoms were taken from *International Tables* for X-ray Crystallography (1974, Vol. IV). The program used was SHELX76 (Sheldrick, 1978). Atomic parameters are given in Table 2,* bond lengths and some important bond angles in Table 3. A projection plot of the isotypic gypsum-type structure is given elsewhere (Cole & Lancucki, 1974).

Related literature. A discussion of the structural relationships between some phases with gypsum-type structure like CaSO₄.2H₂O (Cole & Lancucki, 1974), CaSeO₄.2H₂O (present work) and Y_{1-x} (Gd,Dy, Er)_xPO₄.2H₂O (Seidel, Sowa, Reithmayer, Schulz, Krüger & Abriel, 1991) will be published in due course (Krüger & Abriel, 1991).

Financial support by the Deutsche Forschungsgemeinschaft (SFB 173/Al) and the Fonds der Chemischen Industrie is gratefully acknowledged. Table 3. Bond lengths (Å) and bond angles (°)

Ca - O(W) - O(2) - O(2) - O(1)	2 × 2·358 (2)	O(2) - O(1)	2·573 (2)
	2 × 2·365 (2)	- O(2)	2·695 (2)
	2 × 2·565 (2)	- O(2)	2·703 (2)
	2 × 2·643 (1)	- O(1)	2·718 (2)
Se - O(2)	2×1.634 (1)	O(W) - H(2)	0·73 (4)
- O(1)	2×1.635 (2)	- H(1)	0·75 (2)
O(1)O(2) - O(2) - O(1) - O(<i>W</i>) - O(<i>W</i>)	2·573 (2) 2·718 (2) 2·727 (2) 2·844 (2) 2·846 (3)	H(1)—H(2) - O(1) H(2)—O(1)	1·16 (4) 2·11 (2) 2·12 (4)
O(2)—Se—O(2) O(2)—Se—O(1) O(2)—Se—O(1) O(1)—Se—O(2)	$\begin{array}{l} 2) & 111 \cdot 59 \ (8) \\ 1) & 2 \times 112 \cdot 49 \ (6) \\ 1) & 2 \times 103 \cdot 79 \ (7) \\ 1) & 112 \cdot 96 \ (9) \end{array}$	H(2)—O(<i>W</i>)—	-H(1) 103 (3)

References

CLEGG, W. (1981). Acta Cryst. A37, 22-28.

- COLE, W. F. & LANCUCKI, C. J. (1974). Acta Cryst. B30, 921-929. HAHN, TH. (1983). Editor. International Tables for Crystallogra-
- phy, Vol. A. Dordrecht: Kluwer Academic Publishers.
- HENISCH, H. K. (1970). Crystal Growth in Gels. University Park and London: Pennsylvania State Univ. Press.
- KRÜGER, R.-R. & ABRIEL, W. (1991). To be published.
- SEIDEL, M., SOWA, H., REITHMAYER, K., SCHULZ, H., KRÜGER, R.-R. & ABRIEL, W. (1991). To be published.
- SHELDRICK, G. M. (1978). In Computing in Crystallography, p. 34. Delft Univ. Press.
- SNYMAN, H. C. & PISTORIUS, C. W. S. T. (1963). Z. Kristallogr. 119, 151–154.

Acta Cryst. (1991). C47, 1959-1961

Structure of Tripotassium Hexahydrogenhexamolybdoaluminate(III) Heptahydrate

BY H. Y. LEE, K. M. PARK AND U. LEE

Department of Chemistry, College of Natural Sciences, National Fisheries University of Pusan, 608-737, Korea

AND H. ICHIDA

Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan

(Received 28 January 1991; accepted 15 February 1991)

Abstract. $K_{3}H_{6}[A|Mo_{6}O_{24}].7H_{2}O$, $M_{r} = 1236.06$, monoclinic, $P2_{1}/a$, a = 11.392 (1), b = 11.273 (1), c = 22.354 (2) Å, $\beta = 94.69$ (1)°, V = 2861.0 (8) Å³, Z = 4, $D_{x} = 2.87$ g cm⁻³, Mo K α radation (graphite monochromator, $\lambda = 0.71069$ Å), $\mu = 30.7$ m⁻¹, F(000) = 2360, T = 296 K, R = 0.068 (wR = 0.068) for 3642 reflections with $I_{o} > 4.00\sigma(I_{o})$. The $H_{6}[A|Mo_{6}O_{24}]^{3-}$ polyanion is a typical Anderson-type heteropolyanion. The Mo—O distances range from 1.67 to 2.32 Å. The AlO₆ octahedron is almost regular and mean Al—O bond distances range from 1.89 to 1.92 Å.

Experimental. Colorless, monoclinic crystals of $K_3H_6[AIMo_6O_{24}]$.7H₂O were obtained by mixing AlCl₃ and K_2MoO_4 solution in the molar ratio Al:Mo = 1:6, by adjusting the pH to 3-4 with dilute HC1 solution (Hall, 1907; Baker, Foster, Tan,

0108-2701/91/091959-03\$03.00

© 1991 International Union of Crystallography

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54045 (5 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.